Axial flow turbines for ocean current and wave power systems.

Theo von Backström

Department of Mechanical and Mechatronic Engineering

Univeversity of Stellenbosch

Introduction

- Renewable energy turbines:
 - Solar chimney
 - Wind turbines
 - Ocean current turbines
 - Shrouded ocean current turbines
 - SWEC turbine

Figures in this presentation were sourced from:

Undergraduate final year projects of:

Josh Reinecke, Richard Stanford, Thomas Lewis, Pieka Grobelaar

MScEng theses of:

Warrick Pierce

Josh Reinecke,

Paul Ackerman

PhD thesis of:

Tom Fluri

Co-supervisors:

Prof. Wikus van Niekerk, Prof. Gerhard Venter, Mr. Johan van der Spuy, MS. Nicola Cencelli.

Solar chimney turbine models used in CFD analyses

Solar chimney turbine models

CAD model

Laboratory model

CFD model of low speed wind turbine

Background to Ocean Current Turbines (OCTs)

- Renewable energy systems
- In principle similar to wind turbines
 - Kinetic energy from ocean currents
 - Density of water
 - 800x greater than air
 - Predictable
 - EU 50 TWh/year
 - UK 25% of current energy need

• OCT's generate 4x the power of a wind turbine of same size.

Background to OCTs

- Current prototypes
 - A few already in operation
 - Marine Current Turbines Ltd.
 - SeaGen
 - UEK, Clean current etc.

Stellenbosch model turbine

Initial studies

- Reinecke , 2007
 - Main objective
 - Build a model test ocean current turbine.
 - Benchmark design against Bahaj's rotor design
 - Blade Design
 - Xfoil used to generate shape points
 - NCBlade[™] used to generate CNC code (Gcode)
 - Blade manufactured

Previous Studies (continued)

 Rest of hardware designed and manufactured

Tests conducted at SU towing tank facility.

Previous Studies (continued)

Good Correlation with Bahaj

Stanford's pitch angle distribution

Comparative performance of Stanford and Bahaj rotors

Design Blade Pitch

- Designed blade shows flatter distribution
- Better performance for TSR > 7

Effect of turbine yaw

Performance coefficient vs tip speed ratio

Effect of waves

	TSR	Maximum Coefficient of Performance
No Waves	6.5	0.446
Waves	5.5	0.439

Performance coefficient vs tip speed ratio

Flow augmentation devices

First shrouded turbine

Experimental Setup

Previous studies

Power increase between 44% and 87%!

Velocity contours

Advanced shrouded turbines

Objectives

- Increase power output by factor 2+
- Use split curved plate diffuser and/or airfoil type diffuser
- Compare two diffuser designs
- Manufacture chosen concept using composites
- Compare experimental data with CFD data

Results so far

- Literature study completed
 - Boundary layer bleed slots found to reduce flow separation
 - Preliminary studies using diffuser shows increase of 20%-85%
 - Diffuser momentum theory in infancy.
 Theoretical understanding limited
 - Application of optimization to diffuser
 problems no significant increase over DOE
 - Economically more feasible for OCT's
 - Prototype complexities, installation and maintenance

Pre CFD Results so far (cont.)

- FluentTM code and solver types investigated.
- Simulations vs. 1-D Momentum theory for
 - Rotor with hub case
 - Turbulence Model
 - Laminar Solution
 - Rotor no hub case
 - Turbulence model
 - Laminar Solution
 - Turbulence models
 - Various investigated, Spalart-Almaras, K-e standard, K-e Realizable.
 - K-e Realizable superior in turbulence prediction

CFD velocity contours of split shroud

Conclusions of this section

- Shrouds can be used to to increase power developed
- More studies are necessary to determine if shrouds are economically competitive with increasing the turbine rotor diameter
- Turbine shroud optimisation is proceeding
- For more detail and the very latest developments ask Josh Reinecke

Introduction

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

UNIVERSITEIT STELLENBOSCH UNIVERSITY

UNIVERSITEIT STELLENBOSCI UNIVERSITY

SWEC turbine design procedure

- Next slide
- Also ask Paul Ackerman

CFD meshing

Layout of SWEC turbine

Turbine blade hub, mid and tip performance at high, medium and design flows

SWEC turbine performance

Power as dependent on wave height

Conclusion of this section

This work has shown that:

- The one-dimensional dynamic system model agrees well with the previous model studies
- A highly efficient turbine can be developed
- The generator should preferably be of the variable-speed type

Conclusion of the talk

- Work done at Stellenbosch over the last few years on ocean current and wave system turbines has been presented.
- Students have designed, built and analysed various open and shrouded turbines.