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Introduction

 Renewable energy turbines:
— Solar chimney
— Wind turbines
— Ocean current turbines
— Shrouded ocean current turbines
— SWEC turbine
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Solar chimney turbine models

used in CFD analyses
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Solar chimney turbine models

CAD model Laboratory model



CFD model of low speed wind turbine




Background to Ocean Current Turbines
(OCTs)

 Renewable energy systems

 In principle similar to wind turbines
— Kinetic energy from ocean currents
— Density of water
- 800x greater than air
— Predictable
— EU - 50 TWhl/year
— UK 25% of current
energy need

| GreatOpean ConveyprBeit

 OCT's generate 4x the power of a wind turbine of same size.



Background to OCTS

Current prototypes
— A few already in operation
— Marine Current Turbines Ltd.
— SeaGen

UEK, Clean current etc.

SeaGen turbine farm
(1.2 MW/unit)



Stellenbosch model turbine




Initial studies
 Reinecke , 2007

— Main objective

e Build a model test ocean
current turbine.

 Benchmark design against
Bahaj’'s rotor design

* Blade Design
— Xfoil used to generate
shape points
— NCBlade™ used to

generate CNC code (G-
code)

— Blade manufactured




Previous Studies (continued)

Rest of hardware designed
and manufactured

Tests conducted at SU
towing tank facility.




Previous Studies (continued)

CP vs TSR, Pitch Angle 20° and 25°, VV=1.5 m/s towing speed
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Stanford’s pitch angle distribution
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Comparative performance of Stanford and
Bahaj rotors
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Effect of turbine yaw
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Effect of waves
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Flow augmentation devices

“Partially static

Shroud turbine”
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First shrouded turbine

e

1. Pre-existing equipment R
2. Attachmentrig
3. Diffuser




Experimental Setup
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Diffuser augmented turbine

red

|Larger stream

captu

e ——— = — =
o e —— =
——————— E————

— —
_____“'_ —
e i — e
— e 7
—— A
— = ‘H_';_/
= —f— — i
= — 2

Better stream expansion

n“

Bare Turbine




Previous studies
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® Power increase between 44% and 87%!
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Advanced shrouded turbines




Objectives

Increase power output by factor 2+

Use split curved plate diffuser and/or airfoil type
diffuser

Compare two diffuser designs
Manufacture chosen concept using composites
Compare experimental data with CFD data



Results so far

o Literature study completed

— Boundary layer bleed slots found to reduce
flow separation

— Preliminary studies using diffuser shows
Increase of 20%-85%

— Diffuser momentum theory in infancy.
Theoretical understanding limited

— Application of optimization to diffuser
problems no significant increase over DOE

— Economically more feasible for OCT’s

— Prototype complexities, installation and
maintenance



e ceoirESUIts so far (cont.)

—  Fluent™ code and solver types investigated.
—  Simulations vs. 1-D Momentum theory for
e Rotor with hub case
—  Turbulence Model
— Laminar Solution
e Rotor no hub case
—  Turbulence model
— Laminar Solution
e  Turbulence models

— Various investigated, Spalart-Almaras, K-e
standard, K-e Realizable.

— K-e Realizable superior in turbulence prediction



CFD velocity contours of split shroud




Conclusions of this section

Shrouds can be used to to increase power developed

More studies are necessary to determine if shrouds are
economically competitive with increasing the turbine
rotor diameter

Turbine shroud optimisation is proceeding

For more detail and the very latest developments ask
Josh Reinecke



Stellenbosch Wave
Energy Converter

(SWEC)

Physical Layout : Collector arms

ONTAFANIDONAT 40 ALTNIVA

JSHMSUNAINTDON I

DL AN YA

12m x 6m x 3.5m

i

Un) -



?. - S 4 _ L l . -_—

'f" *** —ity ,_jj-*ﬁ il i A i e T | e kh e
nerqg h"[ raClion Princiy lc:-p&w | ‘L‘\‘I"ﬂ*l

Flﬁqia.rﬁﬁﬁ*r J) ﬁﬁlaﬂﬁilm ﬁju ﬁ;ﬁ\.Tl—ﬁ'__qﬂ.‘T%_ o ?P

Subsurface pressure/velocny fluctuations

FAKULTEIT INGENIEURSWESE
FACULTY OF ENGINEERING

1]
P

nlp
]

5 Turbine

UNIVERSITEIT
STELLENBOSCH
UNIVERSITY



SWEC system modelling
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SWEC turbine design procedure

e Next slide
e Also ask Paul Ackerman



Initial design variables
(Diameter, speed, hub-tip ratio)

A\ 4

Flow Characteristics (flow
rate, pressure drop)

1D design

Initial size, layout and performance
prediction (Balje, 1981)

2D Design

Assumed vortex distribution used to
calculate flow deflection and solidity
using Zwiefel (Dixon,1998)

Panel method (Lewis, 1996) used to
determine blade sections from flow
deflection and solidity

Assemble blade sections into full
blades

3D Design

Assemble blades into the cascade
and into turbine casing including
diffuser

y (m)

CFD simulation to verify design

---------- Design stations
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CFD meshing




Layout of SWEC turbine




Turbine blade hub, mid and tip performance
at high, medium and design flows

ML
HIHYNTA

MR

Tt

LI




SWEC turbine performance
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Power as dependent on wave height

Power (MW)
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Conclusion of this section

This work has shown that:

 The one-dimensional dynamic system model agrees well
with the previous model studies

* A highly efficient turbine can be developed
 The generator should preferably be of the variable-speed

type



Conclusion of the talk

 Work done at Stellenbosch over the last few years on

ocean current and wave system turbines has been
presented.

e Students have designed, built and analysed various
open and shrouded turbines.



